
SQL Injection Vulnerability Demonstration

Project Title
Understanding SQL Injection in PHP Web Applications

Table of Contents
1. Introduction

2. Objective

3. Technologies Used

4. Project Structure

5. How to Set Up the Project

6. Understanding the Vulnerability

7. Testing the SQL Injection

8. How to Prevent It

9. Conclusion

1. Introduction
This project demonstrates how a SQL Injection vulnerability can be exploited in a PHP-based
web application. It helps in understanding how attackers manipulate SQL queries through user
input to bypass authentication or retrieve sensitive data.

2. Objective
The key objectives of this project are:

● To demonstrate the working of a SQL Injection attack

● To understand how such vulnerabilities arise in PHP applications

● To learn methods to fix and prevent SQL Injection using secure coding practices

3. Technologies Used
● Programming Language: PHP

● Database: MySQL

● Server Environment: MAMP or XAMPP (for local development)

● Interface: HTML-based login form

4. Project Structure
The project typically consists of the following components:

● A database configuration file for connecting to MySQL

● An HTML form to accept login credentials

● A script that processes the login and contains the SQL vulnerability

● A page that displays upon successful login

● A SQL file to set up the required database and table with sample user data

5. How to Set Up the Project

1. Place the project folder in the htdocs directory (for XAMPP) or the equivalent directory
in MAMP.

2. Launch Apache and MySQL servers through MAMP or XAMPP.

3. Open phpMyAdmin by visiting http://localhost/phpMyAdmin.

4. Create a new database, for example, sql_injection_demo.

5. Import the provided .sql file to create the users table and insert sample data.

6. Access the project in the browser at http://localhost/your_project_folder.

6. Understanding the Vulnerability
SQL Injection occurs when user inputs are directly embedded into SQL queries without any
form of input validation or escaping. This allows an attacker to alter the structure of the SQL
query, potentially bypassing login mechanisms or accessing unauthorized data.

7. Testing the SQL Injection
To test for SQL Injection:

● Navigate to the login form in the browser.

● Enter crafted input that manipulates the SQL query (such as a condition that always
evaluates to true).

● If the application is vulnerable, it will authenticate the user without valid credentials,
indicating successful exploitation.

This step demonstrates how attackers can bypass authentication in a vulnerable application.

8. How to Prevent It
SQL Injection vulnerabilities can be mitigated using the following practices:

● Use prepared statements and parameterized queries to separate data from SQL logic.

● Validate and sanitize all user inputs before using them in database queries.

● Avoid displaying raw database errors to users.

● Regularly update and audit your code for security flaws.

9. Conclusion
This project highlights how easily SQL Injection can be exploited if proper precautions are not
taken. By simulating the attack and then securing the code, developers can better understand
the importance of secure coding practices in PHP applications.

This hands-on experience strengthens the understanding of web application security and
demonstrates the real-world impact of improper input handling.

Source code :
https://drive.google.com/drive/folders/15gGZBny_Fl_lb0d
TJ2f3SunJA3XJWhik?usp=sharing

9. Screenshots

https://drive.google.com/drive/folders/15gGZBny_Fl_lb0dTJ2f3SunJA3XJWhik?usp=sharing
https://drive.google.com/drive/folders/15gGZBny_Fl_lb0dTJ2f3SunJA3XJWhik?usp=sharing

	SQL Injection Vulnerability Demonstration
	Project Title
	Table of Contents
	1. Introduction
	2. Objective
	3. Technologies Used
	4. Project Structure
	5. How to Set Up the Project
	6. Understanding the Vulnerability
	7. Testing the SQL Injection
	8. How to Prevent It
	9. Conclusion
	Source code : https://drive.google.com/drive/folders/15gGZBny_Fl_lb0dTJ2f3SunJA3XJWhik?usp=sharing​​9. Screenshots

